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We consider the 2D Navier–Stokes system, perturbed by a white in time random
force, proportional to the square root of the viscosity. We prove that under the
limit ‘‘time to infinity, viscosity to zero’’ each of its (random) solution converges
in distribution to a non-trivial stationary process, formed by solutions of the
(free) Euler equation, while the Reynolds number grows to infinity. We study
the convergence and the limiting solutions.
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1. INTRODUCTION

In this work we study the small-viscosity 2D Navier–Stokes (NS) system,
perturbed by a small random force:

u̇− n Du+(u ·N) u+Np=`n ĝ(t, x), 0 < n [ 1,

div u=0, u=u(t, x), p=p(t, x), x ¥ T2=R2/(2pLZ2).
(1.1)

It is assumed that > u dx — > ĝ dx — 0, and that ĝ(t, x)=d
dt ẑ(t, x), where the

random field ẑ is (sufficiently) smooth in x, while as a function of time t it
is a Wiener process (see below (2.4)). That is, the force ĝ(t, x) is white in
time and smooth in space.
Equation (1.1), interpreted as a Markov system in the space H of

square-integrable divergence-free vector fields u(x), has a stationary



measure mn (see ref. 24). Moreover, the equation has a (weak) stationary
solution Un(t), t ¥ R, such that DUn(t) — mn. It was proved recently that
under certain nondegeneracy assumptions on the force, the stationary
measure mn is unique, and distribution D(un(t)) of any solution un con-
verges to mn as tQ.. So in the non-degenerate case we have:

dist(D(un(t), DUn(t))Q 0 as tQ.. (1.2)

Discussion of this result see below in Section 2.
Let Un(t) be any stationary solution of (1.1) (we do not assume that

the force ĝ is non-degenerate. Well known calculations, based on the Ito
formula (repeated in Section 2) show that

E ||Un ||
2
1=

1
2 B0, E ||Un ||

2
2=

1
2 L

−2B1, (1.3)

where B0 and B1 are explicit constants, calculated in terms of the force ĝ,
and for m=0, 1, 2,... we denote by || · ||m the norm in the Sobolev space
Hm …H. For m=0 || · ||0 is the L2-norm, it will be denoted | · |.
The estimates (1.3) imply that the averaged energy2 E |Un(t)|2 of Un is

2More exactly, the doubled energy per unit area since |Un |2=(2pL)−2 > |Un(x)|2 dx.

of order L2 (see below (2.15)). Hence, its Reynolds number is

R(Un)=
L(E |Un |2)1/2

n
’
L2

n
.

The fact that the energy of Un is of order L2 while its Reynolds number is
of order L2n−1 makes our scaling of the NS system convenient to study the
2D turbulence. We note that the substitution u(t)=n1/3v(y), y=n1/3t,
transforms (1.1) to the equation

vy−d Dv+(v ·N) v+NpŒ=
d
dy

z̃(y, x), (1.4)

where d=n2/3 and z̃(y, x)=n1/6z(n−1/3y, x). The random field z̃ is distrib-
uted as ẑ, and stationary solutions for (1.4) have energy of order L2d−1 and
the Reynolds number of order L2d−3/2. So (1.1) is equivalent to the NS
system (1.4), perturbed by a white in time random force of order one, but
the former scaling is more convenient than the latter.
Our goal in this work is to examine the inviscid limit of the process Un,

i.e., its limit as n Q 0. The period L is a parameter of the problem which we
keep fixed.
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In Theorem 3.1 and Lemma 3.2 we show that any sequence ñj Q 0
contains a subsequence nj Q 0 such that the process Unj converges in dis-
tribution to a limiting process U( · ). Its energy |U(t)|2 and enstrophy
||U||21=|rot U|

2 are time-independent random constants:

|U(t)|2=E, ||U(t)||21=W -t.

The expectation of the enstrophy is known, while the expectation of the
energy is bounded from below and from above:

EW=
1
2
B0,

L2B20
2B1

[ EE [
L2B0
2
. (1.5)

Moreover, certain exponential moments of E and W are finite, and

E ||U(t)||22 [
1
2 L

−2B1 -t. (1.6)

Crucial property of the process U, established in Theorem 3.4, is that
almost every of its trajectory satisfies the Euler equation

U̇+(U·N) U+Np=0, div U=0, F U dx=0. (1.7)

Note that although U solves the free equation (1.7), relations (1.5) show
that it remembers some characteristics of the force ĝ. In particular, U is not
identically zero. In Section 3.5 it is proved that if the force ĝ(t, x) is non-
degenerate and stationary in x, then the process U has zero mean-value:

EU(t, x)=0 -t, x.

Due to (1.5) this implies that the process U is ‘‘genuinely random.’’
Due to (1.6), U(0) ¥H2 a.s. No existence and uniqueness theorem for

the Euler equation with Cauchy data in H2 is known. Still, as we show
in Section 3.4, estimates (1.5) and (1.6) imply that with probability one
trajectories of the process U belong to a uniqueness class for the Euler
equation, and that they are trajectories of a continuous dynamical system
which the equation defines in a certain functional space HE. Accordingly,
the distribution DU(t) of the process U at any point t is an invariant
measure for the Euler equation in the space HE (see Theorem 3.6).
Jointly with (1.2) the established results imply that in the non-degen-

erate case the double limit

lim
nj Q 0

lim
TQ.

unj (T+·)=U(· ) (1.8)
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exists (the convergences are understood as f-weak convergences of distri-
butions of random processes {u(t), t \ 0}), and the limiting stationary
process U is a random solution of the deterministic Euler equation (1.7).
The limits in (1.8) do not commute. Indeed, when nj Q 0, unj (t) converges
to a deterministic solution u0(t) of (1.7). When tQ. this solution has no
reason to converge to a limit and to remember characteristics of the force g̃

(cf. (1.5)).
Our results show that the scaling (1.1) of the 2D NS system may be

appropriate for certain form of 2D turbulence since under the limit n Q 0
stationary solutions of the equation converge (at least, along a sub-
sequence) to a regular limit, while their Reynolds numbers diverge to infin-
ity. In the 3D case the right scaling is different, if we believe that predic-
tions of the Kolmogorov theory apply to space-periodic turbulent flows.
Indeed, let un be a stationary (in time) solution of the 3D NS system (1.1)
with `n ĝ replaced by ĝ.3 Then, applying the Ito formula, we get that

3We boldly believe that, as in the 2D case, such solutions exist.

nE ||un ||
2
1=

1
2 B0 (cf. (1.3)). In particular, nE ||un ||

2
1 (trivially) converges to a

positive finite limit when n Q 0, as predicted by the Kolmogorov theory. So
in the 3D case exactly this scaling (without the factor `n in the r.h.s.)
should be correct. We also note that our results apparently disagree with
the Kraichnan theory of 2D turbulence (ref. 13 and Section 4.2 in ref. 12).
Actually, Kraichnan’s theory involves an inverse cascade which cannot be
present in a bounded system, so it is ruled out by our space-periodic solu-
tions of the white-forced NS system. Indeed, if un is a stationary solution of
(1.1), then E ||un(t)||

2
2=O(1) as n Q 0, see (1.3). In particular lim nE ||un ||

2
2

=0. But it is postulated in the Kraichnan theory that this limit is positive
and finite.4

4Note that for any other scaling of the 2D NS equation (e.g., for (1.4)) the inviscid limit
limnQ 0 un is either zero or infinity.

Due to (1.8), solutions of the Euler equation approximate the velocity
fields of 2D turbulent flows with high Reynolds numbers. This property of
the 2D turbulence was predicted by many physicists, cf. refs. 12 and 21.
Accordingly, one can try to use the Euler equation to calculate characteris-
tics of solutions un for (1.1) with n ° 1. For example, let us take a contin-
uous functional f on H, consider an observable variable f(un(t)) and try
to find its average in ensemble. If we can use some ergodic arguments to
calculate the averages OfP of f along trajectories of the Euler flow, then
due to (1.8) we will have limnj Q 0 limtQ. Ef(unj (t))=OfP, independently
of the sequence nj. So OfP would approximate asymptotic in time value
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of Ef(un(t)) for solutions with small viscosity n. As we show in Proposi-
tion 3.7, the quantities Ig=> g(rot U(t, x)) dx, where g are bounded con-
tinuous functions, are integrals of motion for the limiting processes U.
Hence, their trajectories cannot be ergodic in the codimension-two surfaces
Ha, b={|u|=a, ||u||1=b}. So it is unlikely that the ‘‘right’’ average OfP can
be found, assuming equidistribution of trajectories on the surfaces Ha, b
(concerning such calculations see ref. 12). On the contrary, it is plausible
that the energy |U|2 and the quantities Ig give a complete list of integrals of
motion for the process U. If so, then the theory of Robert (e.g., see in
ref. 22) can be used to calculate the averages of f along the corresponding
surfaces of infinite codimension. Next one can hope to integrate the result-
ing quantities in the parameter, which parameterises the surfaces (at least,
to integrate approximately). This would give us approximate value of the
expectations Ef(un(t)) for large time t and small viscosity n.

The approach to study limiting behaviour of the NS system, suggested
in this work, applies to other damped/driven Hamiltonian PDEs with two
or more integrals of motion. In particular, to the damped/driven nonlinear
Schrödinger equation

u̇− n Du+i(Du− |u|2 u)=`n g(t, x), dim x [ 4.

Now the limiting processes U are non-trivial stationary solutions of the
nonlinear Schrödinger equation, and the distributions DU(0) are its
invariant measures. Details will be given in a joint paper with Armen
Shirikyan which is now under preparation.

Notations. P(X) is the set of probability Borel measures on a
metric space X, provided with the f-weak topology. Cb(X) is the space of
bounded continuous functions on X. D(t) denotes the distribution of a
random variable t. By C, C1, etc. we denote various n-independent finite
constants.

2. PRELIMINARIES

Let H be the Hilbert space of square-integrable divergence-free vector
fields on T2 with zero mean-value, given the scalar product (u, v)=
(2pL)−2 > u · v dx and the norm |u|=(u, u)1/2. Let P be L2-orthogonal
projector to H. Applying P to (1.1) we get

u̇(t)+nAu(t)+B(u(t), u(t))=n1/2g, (2.1)

where A=−PD, B(u, u)=P(u ·N) u, and g=Pĝ. In (2.1) we view u and g

as curves in H. See, e.g., refs. 3 and 9.
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For n=0 Eq. (1.1) becomes the Euler equation (1.7). Application of
the projector P transforms it to Eq. (2.1) with n=0:

u̇(t)+B(u(t), u(t))=0.

Let {es, s ¥ Z20 :=Z20{0}} be the Hilbert basis of H, formed by
trigonometric vector fields:

{es, e−s}={cs s+ cos L−1s · x, cs s+ sin L−1s · x} -s ¥ Z20,

where s+=( −s2s1 ) for any vector (
s1
s2
) ¥ Z20, and cs=`2 |s|

−1 is the L2-nor-
malizing factor. Then

Aes=ases, as=L−2 |s|2 -s.

For any r \ 0 we define the Sobolev space H r as H r={u ¥H | ||u||r=
|A r/2u| <.}. In particular, H0=H and || · ||0=|· |. For r < 0 we set H r to
be equal to the completion of H in the norm || · ||r, defined as above.
Since for u=; uses we have ||u||21=; as |us |2 and as \ L−2 for each s,

then

||u||1 \ L−1 |u|. (2.2)

The norms || · ||j satisfy the interpolation inequalities. In particular,

||u||21 [ |u| · ||u||2. (2.3)

The random force g is assumed to be

g(t)=
d
dt

z(t), z= C
s ¥ Z

2
0

bsbs(t) es(x), (2.4)

where {bs} are independent standard Wiener processes, defined for t ¥ R,
and {bs \ 0} are constants. For j=0, 1,... we set

Bj= C
s ¥ Z0

|s|2j b2s [..

Everywhere below we assume that

B0, B1 <.. (2.5)

Integrating (2.1) from y to T > y we get

u(T)+F
T

y

(nAu+B(u, u)) dt=u(y)+`n z(T)−`n z(y). (2.6)
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An a.s. continuous random process u(t) ¥H, t \ y, such that its norm
||u(t)||1 is square-integrable on every finite time-interval is called a solution
for (2.1), if the relation (2.6) holds a.s. for each T > y. Here both parts of
(2.6) are understood as elements of H−1. It is known (see, e.g., ref. 24) that
for any u0 ¥H Eq. (2.1) has a unique solution u(t), t \ y, equal u0 for t=y.
A random process ũ(t) ¥H0, t \ y, is called a weak solution for (2.1) if

one can find a process z̃(t) ¥H, distributed as z(t), such that ũ is a solution
for (2.1) with z replaced by z̃. Its distribution D(ũ( · )) (i.e., a measure
in C([y,.); H)) also is called a week solution, cf. ref. 24, Chapter X.
A solution u(t) (weak or strong), defined for all t, is called a stationary
solution if u is a stationary process in H. For a random variable v ¥H with
a finite second moment, independent of the process g(t), t \ 0, we denote
by u(t; v), t \ 0, a strong solution for (2.1), equal v at t=0 (such a solution
exists, see ref. 24). A measure m ¥P(H) is called a stationary measure for
(2.1) if

D(v)=m SDu(t; v)=m -t \ 0.

If u( · ) is a stationary solution, then the distribution Du(t), t ¥ R, is a
(t-independent) stationary measure in H. Conversely, if m is a stationary
measure, then there exists a (weak) stationary solution u such that
Du(t) — m (e.g., see in refs. 8 and 16).
It is known that every Eq. (2.1) (satisfying (2.5)) has a stationary

measure m, see ref. 24. Its uniqueness is established under the additional
assumption that

bs ] 0 - |s| [Nn, (2.7)

where Nn is a sufficiently large number. First this result was proven in
ref. 14 for the NS system (as well as for some other nonlinear equations),
perturbed by random kick-forces

C
.

k=−.
gk(x) d(t−Tk), gk(x)=C

s
bstskes(x),

where {tsk} are independent bounded random variables with k-independent
distributions, satisfying some mild restrictions. The proof is based on the
Foias–Prodi reduction which reduces the NS system to a finite-dimensional
system with delay, satisfied by Fourier coefficients us(t) of solutions u(t, x),
with |s| [Nn. Next E et al. (8) and Bricmont et al. (1) applied the Foias–Prodi
reduction to prove that the white-forced NS system (2.1), (2.4), (2.7) has a
unique stationary measure. These results were later developed in a number
of works, including refs. 6, 15, 19, and 20, and ref. 16 (see the review in
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ref. 17). In particular, it was shown in refs. 1 and 19 (under some addi-
tional restrictions) and later in ref. 16 (without the restrictions) that

:Ef(u(t; v))−F f(u) m du : [ Cn(1+E |v|2) e−snt, sn > 0, (2.8)

for any bounded Lipschitz functional f on H such that |f| [ 1 and
Lip(f) [ 1.
Let us introduce in P(H) the distance

dist(m1, m2)=sup(m1−m2, f),

where the supremum is taken over all f as above. It is known that
(P(H), dist) is a complete metric space, and that convergence with respect
to this distance is equivalent to the f-weak convergence of measures, see
ref. 5. We can rewrite (2.8) as

dist(Du(t; v), m) [ Cn(1+E |v|2) e−snt. (2.9)

We note that if

bs ] 0 -s, (2.10)

then the assumption (2.7) holds for each n > 0, so for any n > 0 Eq. (2.1)
has a unique stationary measure m=mn, satisfying (2.9).

Lemma 2.1. If (2.10) holds, then the measure mn ¥P(H) continu-
ously depends on n > 0.

Proof. Due to (2.9) it is sufficient to check that Dun(t) ¥P(H) con-
tinuously depends on n for each t \ 0, where un( · ) is a solution of (2.1),
vanishing at t=0. To verify this property we make in (2.1), (2.4) the sub-
stitution u=nU(yn) and get for U the equation

Uy+AU+B(U, U)=n−5/2
“

“y
z(ny)=:

“

“y
zn(y).

To prove the continuity we may assume that n > d > 0. Then 0 [ y [ t/n

< T=t/s. It is easy to check that a solution U ¥ C([0, T]; H)=H contin-
uously depends on zn ¥ C([0, T]; H1)=H1. Since a.s. z ¥ C([0,.), H1),
then a.s. zn ¥H1 continuously depends on n ¥ [d, 1], as well as U ¥H. As
un(t)=nU(tn−1), then a.s. un(t) ¥H continuously depends on n. Hence,
DunŒ(t)QDun(t) as nŒQ n, and the lemma is proven. L
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Let u(t) be a stationary solution of (2.1) (weak or strong). Due to (2.5)
the Ito formula applies to the functional |u(t)|2. Since (B(u, u), u)=0, then
taking expectation of the formula we get that

E |u(t)|2−E |u(0)|2=−2n F
t

0
E(Au, u) dy+n C

s
F
t

0
b2s |es |

2 dy,

(see refs. 8, 23, and 24). As u is a stationary process, then this relation
implies that

E ||u(y)||21=
1
2 B0 -y. (2.11)

Since u=u(x) is a divergence-free vector field, then

||u||21=(2pL)
−2 F

T2
|rot u|2 dx.

So the l.h.s. of (2.11) is the averaged enstrophy of u (per unit area).
Similar, applying the Ito formula to the enstrophy functional

f(u)=||u||21 and using that (B(u, u), Au)=0, we obtain

E ||u(y)||22=
1
2 L

−2B1 -y. (2.12)

Two useful inequalities below follow by applying the Ito formula to
the functionals exp(c |u|2) and exp(c ||u||21), where

c=(2L2b2max)
−1, bmax=max{bs, s ¥ Z20}.

Namely,

E exp(c |u(y)|2) [B0=B0 exp 1
B0+1
2b2max
2 ,

E exp(c ||u(y)||21) [B1=L−2B1 exp 1
L−2B1+1
2b2max
2 .

(2.13)

See ref. 24, p. 395 and ref. 23. Due to (2.13),

E ||u(y)||p1 [ Cpc
−p/2B1 (2.14)

for any p \ 1.
Equalities (2.11) and (2.12) imply lower and upper bounds for

E |u(y)|2. Indeed, taking the expectation of (2.3) we find that

E ||u(y)||21 [ (E |u(y)|
2)1/2 (E ||u(y)||22)

1/2.

The Eulerian Limit for 2D Statistical Hydrodynamics 477



Now (2.11), (2.12) imply a lower bound for E |u(y)|2. Combining it with an
upper bound, which follows from (2.2) and (2.11), we get

1
2
L2B20
B1

[ E |u(y)|2 [
L2B0
2
. (2.15)

3. THE RESULTS

3.1. Tightness

Let mn be a stationary measure for Eq. (2.1) and un(t), t ¥ R, be a
corresponding stationary solution (i.e., D(un(t)) — mn). The equality (2.12)
and the Prokhorov theorem immediately imply that the set {mn, n ¥ (0, 1]}
is tight in H2− E for any E > 0. Jointly with Lemma 2.1 this shows that if
bs ] 0 for all s, then the measures mn ¥P(H2− E) continuously depend on
n ¥ (0, 1].
What is much more important, distributionsmn=D(un( · )) ¥P(C(R; H))

of the weak stationary solutions un for (2.1) also are tight. Below we prove
the tightness for the most important case n Q 0.
Let us fix any e ¥ (0, 1) and define the following spaces of trajectories:

Z=L2 loc(R, H2− e) 5 C(R, H−1− e),

Zn=L2([−n, n], H2− e) 5 C([−n, n], H−1− e), n ¥N.

The norms in the spaces Zn define a countable system of semi-norms [ · ]n
in Z, and define there the distance

dist(u, v)=C 2−n
[u−v]n
[u−v]n+1

,

cf. ref. 24, p. 340. All the spaces Zn and Z are Polish (i.e., complete and
separable).

Theorem 3.1. Any sequence {m ñj}, ñj Q 0, contains a converging
subsequence

mnj Q m ¥P(Z). (3.1)

The theorem is proven in Section 4.1.

The measures mnj are stationary since they are distributions of sta-
tionary processes, so the limiting measure m is stationary as well. By the
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Skorokhod theorem (see ref. 11, Section I.2, we can find random processes
Unj (t), j \ 1, and U(t), defined on the same probability space, such that

DUnj=mnj -j, DU=m,

and

Unj Q U in Z a.s. (3.2)

Below we study properties of the limiting random process U.

3.2. Estimates for Unj
and U

For any N \ 1 we consider the projection

PN: HQH, C
s ¥ Z

2
0

uses W C
|s| [N

uses,

and define the functionals

f(u)=ec ||u||
2
1, fN(u)=ec ||PNu||

2
1 NN, N \ 1.

Clearly f is continuous on H1, the functionals fN are bounded continuous
on H−2 and

0 < fN(u) q f(u) [. -u ¥H−2. (3.3)

Everywhere below in this section

n ¥ {n1, n2,...},

where n1, n2,... is the sequence in (3.1).
Due to (3.2), for each y ¥ R we have EfN(Unj (y))Q EfN(U(y)) as

jQ.. So EfN(U(y)) [B1 for each N, due to (2.13). Evoking (3.3) and the
Levi theorem we get that

E exp(c ||U(y)||21) [B1 -y. (3.4)

Similar,

E exp(c |U(y)|2) [B0 -y. (3.5)
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A remarkable property of the process U is that a.s. its energy |U(t)|2

and enstrophy ||U(t)||21 are time-independent random constants:

Lemma 3.2. Almost surely we have

|U(t)|2=E and ||U(t)||21=W for a.a. t ¥ R. (3.6)

The expectations of the random constants E and W satisfy

EW=
1
2
B0,

L2B20
2B1

[ EE [
L2B0
2
. (3.7)

Besides,

E ||U(y)||22 [
1
2 L

2B1 -y. (3.8)

The lemma is proven below in Section 4.2.

3.3. The Equation for U

Since Un, n ¥ {nj}, is a weak solution for (2.1), then for any T > y it
satisfies (2.6), where z is replaced by a process z̃n with the same distribu-
tion. We rewrite (2.6) as follows:

Y(Un) :=Un(T)−Un(y)+F
T

y

B(Un, Un) dt

=− n F
T

y

AUn(s) ds+`n(z̃n(T)− z̃n(y))=: Gn. (3.9)

Lemma 3.3. The nonlinearity B defines continuous quadratic maps
H2QH1 and H1Q Lp=Lp(T2, R2) 5H, for any p < 2.

The proof of the lemma’s assertions is obvious since the multiplication
of functions defines continuous bi-linear maps H2(T2)×H1(T2)QH1(T2)
and H1(T2)×L2(T2)Q Lp(T2), and since the projection P is continuous in
the Lp-spaces with 1 < p <..
Due to the lemma, Y defines a continuous map ZQH−1− e. So

Y(Unj )Q Y(U) in H−1− e as nj Q 0, almost surely. From other hand, since

E |Gn | [ C`n
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due to (2.12) and (2.4), then Gnj Q 0 in H−1− e in probability. Passing in (3.9)
to the limit in probability as nj Q 0 we get that Y(U)=0 a.s. That is,
almost surely

U̇(t)+B(U(t), U(t))=0. (3.10)

So, a.s. U( · ) ¥ Z is a weak solution of the Euler equation (3.10), equivalent
to (1.7). Due to (3.6), a.s. ||U(t)||1=const. Using (3.8) and the Fubini
theorem we get that

U( · ) ¥ L2 loc(R; H2) a.s. (3.11)

Therefore due to Lemma 3.3 and (3.10),

U̇ ¥ L1 loc(R; H1) 5 L.(R; Lp) a.s., -p < 2. (3.12)

We have proven the following result:

Theorem 3.4. Any limiting measure m ¥P(Z) as in (3.1) is a weak
stationary solution for the Euler equation (3.10) in the following sense:
There exists a stationary random process U(t) ¥H, distributed as m, which
a.s. satisfies (3.10). Moreover,

(1) energy |U(t)|2 of this process a.s. is a time-independent random
constant E such that

L2B20
2B1

[ EE [
L2B0
2
,

(2) its enstrophy ||U(t)||21 a.s. is a time-independent random constant
W such that EW=1

2 B0;

(3) the process satisfies the estimate (3.8), the exponential estimates
(3.4) and (3.5), and its time-derivative satisfies (3.12).

3.4. A Phase-Space for the Euler Equation

By (3.11) and (3.12), with probability one trajectories of the process U
belong to the space

K={u ¥ L2 loc(R; H2) | u̇ ¥ L1 loc(R; H1)}.

Since K … C(R; H1), then due to the lemma below K is an uniqueness
class for the Euler equation.
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Lemma 3.5. Let u(t) and v(t), t ¥ [t1, t2], be two solutions of the
Euler equation (3.10) such that

||u(t)||1+||v(t)||1 [ C1 -t, (3.13)

F
t2

t1
||u(t)||22 dt [ C2, (3.14)

and u equals v at some point t3 ¥ [t1, t2]. Then u(t) — v(t).

The lemma follows from more general results, proved in ref. 25 (see
there Corollary 7.2). In Section 4.3 we present its direct proof, based on the
classical arguments due to Yudovitch (26) (also see in ref. 4).
Let us denote by KE the set of trajectories in K which satisfy the

Euler equation. Clearly KE is a closed subset of K, invariant under the
time-translations u( · )Q u(T+·), T ¥ R. Due to Lemma 3.5 the map

p:KQH1, uW u(0),

restricted toKE, defines a continuous embeddingKE
QH1. We denote by

HE its image p(KE), and provide HE with the topology, induced fromKE.
Due to ref. 2, for any u0 ¥H3 the Euler equation has a unique solution

u ¥K 5 L. loc(R; H3), equal u0 at t=0. This solution, as a point in K,
continuously depends on u0. So

H3 …HE …H1, (3.15)

and the inclusions are continuous. We point out that we do not know if the
(topological) space HE is linear, or not.
For any u0 ¥HE, u=p−1(u0) is the unique solution of the Euler equa-

tion in then space K, equal u0 at t=0. Since u(t)=p(u(t+· )) and the
time-translation maps are continuous inK, then the Euler equation defines
a group of continuous automorphisms St: HEQHE, t ¥ R. As St p U(y)=
U(t+y) and the process U is stationary, then we have:

Theorem 3.6. The distribution D=D U(0) of the process U as in
Theorem 3.4 is an invariant Borel measure for the flow which the Euler
equation defines inHE. The spaceHE satisfies (3.15), and D(HE 5H2)=1.

Since vector fields from H2 have the modulus of continuity5 g(r)=

5 Indeed, by the classical embedding theorem, spaces H r with non-integer r > 1 are embedded
in Hölder spaces C r−1. So by the interpolation, the space H2 is embedded in the interpolating
Hölder space C1g (the Sigmund space). The latter is formed by functions, which have the
modulus of continuity g(r), see ref. 4, p. 31.

r max(1, log r−1), then any u(t, x) ¥K has the modulus of continuity in x,
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equal to f(t) g(r), where f ¥ L2 loc. Therefore by the Osgood criterion, (10)

the differential equation

ẋ(t)=u(t, x), x(t1)=y,

has a unique solution. So the flow-maps S t2t1 : T
2
Q T2, yW x(t2), are well

defined and continuous (see ref. 4). Accordingly, due to the classical
arguments, for any u ¥KE we have w(t, x) — w0(S

0
t (x)), where w(t, x)=

rot u(t, x) (and w0=rot u0).
Approximating u(t, x) by smooth divergence-free vector fields uE(t, x)

(say, obtained as convolutions with scalar mollifiers), we approximate any
continuous flow-map S=S t2t1 by measure-preserving smooth maps T

2
Q T2,

converging to S at each point, see ref. 10, Theorem 2.1, Section V. Passing
to the limit as E Q 0, we find that >T2 f(S(x)) dx=>T2 f(x) dx for each
continuous function f. Hence, the flow-maps preserve the Lebesgue
measure, and

F
T2
g(w(t, x)) dx=F

T2
g(w0 p S

0
t )(x) dx=F

T2
g(w0(x)) dx,

for any t and any g ¥ Cb(R). That is,

F
T2
g(rot U(t, x)) dx=const -t ¥ R, (3.16)

for each U ¥KE. In particular, we have the following result:

Proposition 3.7. For a.a. trajectory of the process U and any
bounded continuous function g, the integral in (3.16) is a time-independent
random constant.

3.5. Homogeneous Solution

Let us assume that

bs=b−s ] 0 -s ¥ Z20. (3.17)

Then the random field z(t, x) is homogeneous in x, i.e., translations of x do
not change its distribution (see ref. 17), and (2.1) has a unique stationary
measure mn. As a consequence, the measure mn and a corresponding sta-
tionary solution Un(t, x) both are homogeneous in x, see ref. 17. Since Un
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a.s. converges to the random field U(t)=U(t, x) as in Theorem 3.4, then U
is homogeneous (i.e., stationary in x).
That is, under the assumption (3.17) the limiting measures m as in

(3.1) correspond to random solutions of (1.7) which are stationary both in
time and space. In particular, since > U dx — 0, then in this case we have

E U(t, x) — 0

(i.e., EU(t)=0 ¥H−1− e for all t).

3.6. One Degenerate Example

Let us consider a force g of the form (2.4), such that bs=0 if |s| > 1.
Then B0=B1, so by Theorem 3.4 we have

EE=
L2B0
2
=L2EW. (3.18)

Let us denote s1=(1, 0) t and s2=(0, 1) t. Due to (2.2), |u|2 [ L2 ||u||
2
1,

and the equality holds if and only if u ¥M4, where

M4=span{e±s1 , e±s2}

=3C1 s1 sin 1a1+x2L
2+C2s2 sin 1a2+x1L

2 : C1, C2 ¥ R, a1, a2 ¥ R/2pZ4 .

So (3.18) implies that a limiting solution U(t) as in Theorem 3.4 belongs to
M4 for all t. For any u ¥M4 we have

(u ·N) u=L−1C1C2 1 s1 cos 1a1+
x2
L
2 sin 1a2+

x1
L
2

+s2 sin 1a1+
x2
L
2 cos 1a2+

x1
L
22

=−C1C2N 1cos 1a1+
x2
L
2 cos 1a2+

x1
L
22 , (3.19)

so B(u, u)=0. That is, U̇ — 0 and U is a constant process

U(t)=C1 s1 sin 1a1+
x2
L
2+C2s2 sin 1a2+

x1
L
2 -t, (3.20)

where C1, C2 and a1, a2 are random variables.
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The processes U above are very degenerate because due to (3.19),
the 4-dimensional spaceM4 is invariant for Eq. (2.1) with g=0. The space
M4 is a maximal one with this property since if M is a linear subspace
of H, invariant for (2.1) with g=0, and M4 …M, M4 ]M, then M is
dense in H, see ref. 7. Accordingly, if bs ] 0 for |s| [ 2, then the corre-
sponding processes U have no chances to be as degenerate as (3.20).

4. PROOFS

4.1. Proof of Theorem 3.1

Our arguments in this section closely follow ref. 24, Chapter X.
First we note that to prove the theorem it is sufficient to check that for

any n \ 1 the sequence of measures {mnñj , j=1, 2,...} is tight in Z
n, where

mnñj=D(u ñj |[−n, n]) ¥P(C([−n, n]; H)).

Indeed, we need to verify that the sequence {m ñj} contains a subsequence
{mnj} such that

(mnj , f)Q (m, f), m ¥P(Z), (4.1)

for any f ¥ Cb(Z). It is known that it suffices to check (4.1) for bounded
Lipschitz functionals fL (see ref. 5, Theorem 11.3.3). It is easy to approx-
imate any such fL by functionals f

n
L=g

n
L p pn, where pn is the natural

projection ZQ Zn, and g
n
L is a bounded Lipschitz functional on Zn. Since

(mn, g
n
L p pn)=(m

n
n , g

n
L), then (4.1) holds if

mnnj Q m
n

-n, (4.2)

where mn=(pn)g m. If we know that the sequence {m
n
ñj
} is tight in Zn for

each n, then we can use the diagonal process to construct a subsequence
{nj} such that (4.2) holds for every n. The measures mn ¥P(Zn) form a
compatible family and define a measure m ¥P(Z) that satisfies (4.1).
So we need to check that the sequence of measures {mnñj} is tight for

any fixed n. Let un be a stationary solution for (2.1) such that D(un)=mn.
We abbreviate u=un and take any t1, t2 ¥ [−n, n], satisfying t1 [ t2 and
|t1−t2 | [ 1. We have

u(t2)−u(t1)=−n F
t2

t1
Au(s) ds−F

t2

t1
B(u(s), u(s)) ds+`n(z(t2)−z(t1))

(4.3)
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(strictly speaking, since u is a weak solution, then z should be replaced by a
suitable process z̃, distributed as z. This inaccuracy makes no difference for
what follows).
The H-norm of the first integral in the r.h.s. of (4.3) is bounded by

n 1F t2
t1
||u||2 ds2 [ n |t2−t1 |

1
2 1F t2

t1
||u||22 ds2

1
2
[ n |t2−t1 |

1
2 1F n

−n
||u||22 ds2

1
2
.

Due to (2.12),

E 1F n
−n
||u||22 2

1
2
[ (nL−2B1)

1
2.

Since ||B(u, u)||−1 [ C ||u||
2
1, then H

−1-norm of the second integral is
bounded by

|t2−t1 | sup
[t1, t2]

||u(t)||21 [ |t2−t1 | C
n−1

m=−n
sup
[m, m+1]

||u(t)||21.

An application of the Ito lemma to ||u(t)||21 (cf. (4.6) in the next subsection)
bounds the expectation of oscillation of ||u(t)||21 on any segment [m, m+1]
by C`n. So due to (2.11),

E C
n−1

m=−n
sup
[m, m+1]

||u(t)||21 [ C1n.

Finally, due to basic properties of the Brownian motion, the H-norm
of the third term in the right-hand side of (4.3) is bounded by

`n |t2−t1 |
1
3 t,

where t \ 0 and Et [ C2(n).
Let us consider the Hölder space C1/3([−n, n], H−1)=: C1/3n . Due

to (2.11) and the estimates for the norms of the three terms in the r.h.s.
of (4.3),

E |un |C1/3n [ C(n). (4.4)

Let Yn be the space Yn=C1/3n 5 L2([−n, n], H2). Since

E |un |
2
L2([−n, n], H

2)=nL
−2B1
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by (2.12), then using (4.4) we have

E |un |Yn [ CŒ(n) -n.

As the space Yn is compactly embedded in the separable space Zn (ref. 24,
Lemma X.3.1), then the family of measures mnn=Dun |[−n, n] is tight in Zn by
the Prokhorov theorem. Theorem 3.1 is proven. L

4.2. Proof of Lemma 3.2

Let us apply the Ito formula to the functional tn(t)=||Un(t)||
2
1. For

any t1 [ t2 we have:

tn(t2)−tn(t1)=−2n F
t2

t1
||Un(t)||

2
2 dt+n F

t2

t1
C
s
b2s (es, Aes) dt

+2`n C
s
bs F

t2

t1
(Un(t), Aes) dbs(t)

(cf. the remark after the formula (4.3)). Noting that the second term in the
r.h.s. equals nL−2B1(t2−t1), we see that

osc tn |[0, 1] := sup
0 [ t1 [ t2 [ 1

|tn(t1)−tn(t2)|

[ nL−2B1+2n F
1

0
||Un(t)||

2
2 dt

+4`n sup
0 [ y [ 1

: F y
0

1AUn(t),C bsesdbs(t)2: . (4.5)

Writing Un(t) as ; Un s(t) es and applying the Burkholder–Devis–Gundi
inequality, we see that the expectation of the third term in the r.h.s. of (4.5)
is bounded by

4`n E 1 C
s ¥ Z20

F
1

0
a2s b

2
sUns(t)

2 dt2
1/2

[ 4`n bmax 1E F
1

0
||Un(t)||

2
2 dt2

1/2

=4`n bmaxL−1=
B1
2
,

where to get the last equality we used (2.12). Using (2.12) once again to
estimate the expectation of the second term in the r.h.s. of (4.5) we get that

E(osc tn |[0, 1]) [ C`n. (4.6)
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Let us denote by E and g the following functionals on Z:

E(u)=F
1

0
||u(t)||21 dt, g(u)=F

1

0
| ||u(t)||21−E(u)| dt.

By EN and gN, N ¥N, we denote their regularized versions:

gN(u)=g(u)NN, EN(u)=E(u)NN.

All these functionals are continuous non-negative, and

gN q g, EN q E as NQ..

Due to (2.11),

EE(Un)=F
1

0
E ||Un(t)||

2
1 dt=

1
2 B0. (4.7)

Besides, due to (2.14) we have

E E(Un)2=E 1F 1
0
||Un ||

2
1 dt2

2

[ E F
1

0
||Un ||

4
1 dt [ CŒ.

Therefore,

EE(Un) IE(Un) >M [
1
M

EE(Un)2 [M−1CŒ.

So the system of random variables {E(Un)} is uniformly integrable, and
(3.2) implies that

EE(U)=lim EE(Un)=
1
2 B0,

see ref. 5, Theorem 10.3.6. Since the process U(t) is stationary, then

EE(U)=E F
1

0
||U(t)||21 dt=E ||U(t)||21.

That is,

E ||U(t)||21=
1
2 B0 -t ¥ [0, 1]. (4.8)
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Now we return to estimate (4.6). As |tn(t)− >10 tn(y) dy| [ osc tn |[0, 1]
for 0 [ t [ 1, then due to (4.6) we have

0 [ EgN(Un) [ Eg(Un) [ C`n.

Passing to the limit as nj Q 0 using (3.2), we get that EgN(U)=0 for each N.
That is, g(U)=0 a.s., and ||U(t)||21=E(U) a.e. in [0, 1]. Repeating these
arguments for all half-integer time-intervals [n2 ,

n
2+1], n ¥ Z, we get that a.s.

||U(t)||21=W for a.a. t ¥ R. (4.9)

Here W is a random constant which can be defined, say, as

W=E(U)=F
1

0
||U(t)||21 dt.

Using (4.8) we see that expectation of W satisfies the first relation in (3.7).
Applying the Ito formula to the functional |Un |2, we get a bound for

oscillation of |Un(t)|2, analogous to (4.5). Next we repeat derivation of (4.9)
to find that the energy of the process U(t) a.s. is a time-independent
random constant E.
Passing to the limit in (2.12) using (3.2) and the Levi theorem we get

(3.8) (cf. the derivation of (3.4)). Repeating the arguments that proved
(2.15) and using (4.8) and (3.8), we find that

L2B20
2B1

[ EE [
L2B0
2
.

Now the lemma is proven. L

4.3. Proof of Lemma 3.5

To simplify notations we assume that t1=t3=0 and t2=T> 0. Below
the constants C, C1, etc. are independent of the parameter p > 2.
Let us denote b(u1, u2, u3)=(B(u1, u2), u3) and w=u−v. Subtracting

from the equation for u the equation for v, multiplying the result in H by w
and using that b(v, w, w)=0 we get:

1
2
d
dt
|w|2+b(w, u, w)=0. (4.10)
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Abbreviating b(w, u, w)=b and applying the Hölder inequality, we get

|b| [ C |Nu|p |w|
2
2q,

1
p
+
1
q
=1, p > 2 (4.11)

(here and below | · |r stands for the Lr-norm). It is known that the Sobolev
embedding theorem for the space H1 can be specified as follows:

|V|p [ C`p ||V||1 -V ¥H1, (4.12)

where C=C(L), see ref. 18, Theorem 8.5.6 Therefore,

6 In the statement of the theorem in ref. 18 the value of the constant that bounds the norm of
the Sobolev embedding is given incorrectly, but right value of the constant immediately
follows from the proof (which is correct).

|Nu|p [ C`p ||u||2.

To estimate |w|2q we write

F |w|2q dx=F |w|a |w|2q−a dx [ |w|a2 |w|2q−ap(2q−a), a=
2
q
,

where we used the Hölder inequality with P=2/a=q, Q=p. Since
||w||1 [ ||u||1+||v||1, then due to (3.13), (4.12) we have

|w|22q [ C |w|
2q−2

2 (C
2
1p(2q−a))

2q−a
2q .

Noting that 0 < 2q−a2q =
q+1
pq [ 2

p , we obtain

|w|22q [ CŒ |w|
2q−2

2 p2/p [ C |w|2q
−2

2 .

So

|b| [ C`p ||u(t)||2 |w|
2q−2

2 . (4.13)

Let us denote g=|w|22. Relations (4.10) and (4.13) imply the differen-
tial inequality

ġ(t) [ C`p g(t)q
−2
||u(t)||2.
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As g(0)=0 and 1−q−2=(q+1)/pq, then applying the Gronwall lemma
we get an upper bound for g:

g(t) [ 1C(1−q−2)`p F t
0
||u(s)||2 ds2

pq
q+1

[ 1C1 p−1/2`t 1F
t

0
||u(s)||22 ds2

1/22
pq
q+1

.

Using (3.14) and passing to the limit as pQ., we see that g(t)=0 for
all 0 [ t [ T, as stated.
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